Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
2.
Parasitology ; 151(3): 282-294, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38200699

ABSTRACT

The most common equine tapeworm, Anoplocephala perfoliata, has often been neglected amongst molecular investigations and has been faced with limited treatment options. However, the recent release of a transcriptome dataset has now provided opportunities for in-depth analysis of A. perfoliata protein expression. Here, global, and sub-proteomic approaches were utilized to provide a comprehensive characterization of the A. perfoliata soluble glutathione transferases (GST) (ApGST). Utilizing both bioinformatics and gel-based proteomics, GeLC and 2D-SDS PAGE, the A. perfoliata 'GST-ome' was observed to be dominated with Mu class GST representatives. In addition, both Sigma and Omega class GSTs were identified, albeit to a lesser extent and absent from affinity chromatography approaches. Moreover, 51 ApGSTs were localized across somatic (47 GSTs), extracellular vesicles (EVs) (Whole: 1 GST, Surface: 2 GSTs) and EV depleted excretory secretory product (ESP) (9 GSTs) proteomes. In related helminths, GSTs have shown promise as novel anthelmintic or vaccine targets for improved helminth control. Thus, provides potential targets for understanding A. perfoliata novel infection mechanisms, host­parasite relationships and anthelmintic treatments.


Subject(s)
Anthelmintics , Cestoda , Cestode Infections , Animals , Horses , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Proteomics , Cestode Infections/veterinary , Cestoda/genetics
3.
PLoS Negl Trop Dis ; 17(9): e0011663, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37769025

ABSTRACT

Long non-coding (lnc)RNAs are a class of eukaryotic RNA that do not code for protein and are linked with transcriptional regulation, amongst a myriad of other functions. Using a custom in silico pipeline we have identified 6,436 putative lncRNA transcripts in the liver fluke parasite, Fasciola hepatica, none of which are conserved with those previously described from Schistosoma mansoni. F. hepatica lncRNAs were distinct from F. hepatica mRNAs in transcript length, coding probability, exon/intron composition, expression patterns, and genome distribution. RNA-Seq and digital droplet PCR measurements demonstrated developmentally regulated expression of lncRNAs between intra-mammalian life stages; a similar proportion of lncRNAs (14.2%) and mRNAs (12.8%) were differentially expressed (p<0.001), supporting a functional role for lncRNAs in F. hepatica life stages. While most lncRNAs (81%) were intergenic, we identified some that overlapped protein coding loci in antisense (13%) or intronic (6%) configurations. We found no unequivocal evidence for correlated developmental expression within positionally correlated lncRNA:mRNA pairs, but global co-expression analysis identified five lncRNA that were inversely co-regulated with 89 mRNAs, including a large number of functionally essential proteases. The presence of micro (mi)RNA binding sites in 3135 lncRNAs indicates the potential for miRNA-based post-transcriptional regulation of lncRNA, and/or their function as competing endogenous (ce)RNAs. The same annotation pipeline identified 24,141 putative lncRNAs in F. gigantica. This first description of lncRNAs in F. hepatica provides an avenue to future functional and comparative genomics studies that will provide a new perspective on a poorly understood aspect of parasite biology.

4.
J Peripher Nerv Syst ; 28 Suppl 3: S3-S11, 2023 07.
Article in English | MEDLINE | ID: mdl-37272548

ABSTRACT

Action potential propagation along myelinated axons depends on the geometry of the myelin unit and the division of the underlying axon to specialized domains. The latter include the nodes of Ranvier (NOR), the paranodal junction (PNJ) flanking the nodes, and the adjacent juxtaparanodal region that is located below the compact myelin of the internode. Each of these domains contains a unique composition of axoglial adhesion molecules (CAMs) and cytoskeletal scaffolding proteins, which together direct the placement of specific ion channels at the nodal and juxtaparanodal axolemma. In the last decade it has become increasingly clear that antibodies to some of these axoglial CAMs cause immune-mediated neuropathies. In the current review we detail the molecular composition of the NOR and adjacent membrane domains, describe the function of different CAM complexes that mediate axon-glia interactions along the myelin unit, and discuss their involvement and the underlying mechanisms taking place in peripheral nerve pathologies. This growing group of pathologies represent a new type of neuropathies termed "nodopathies" or "paranodopathies" that are characterized by unique clinical and molecular features which together reflect the mechanisms underlying the molecular assembly and maintenance of this specialized membrane domain.


Subject(s)
Axons , Ranvier's Nodes , Humans , Ranvier's Nodes/pathology , Myelin Sheath , Neuroglia , Peripheral Nerves
5.
Animals (Basel) ; 12(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36139252

ABSTRACT

The application of precision livestock farming (PLF) technologies will underpin new strategies to support the control of livestock disease. However, PLF technology is underexploited within the sheep industry compared to other livestock sectors, and research is essential to identify opportunities for PLF applications. These opportunities include the control of endemic sheep disease such as parasitic gastroenteritis, caused by gastrointestinal nematode infections, which is estimated to cost the European sheep industry EUR 120 million annually. In this study, tri-axial accelerometers recorded the behaviour of 54 periparturient Welsh Mule ewes to discover if gastrointestinal nematode (GIN) infection burden, as measured by faecal egg count (FEC), was associated with behavioural variation. Linear mixed models identified that increasing FECs in periparturient ewes were significantly associated with a greater number of lying bouts per day and lower bout durations (p = 0.013 and p = 0.010, respectively). The results demonstrate that FECs of housed periparturient ewes are associated with detectable variations in ewe behaviour, and as such, with further investigation there is potential to develop future targeted selective treatment protocols against GIN in sheep based on behaviour as measured by PLF technologies.

6.
J Proteome Res ; 21(8): 1997-2010, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35849550

ABSTRACT

Fasciola hepatica, the common liver fluke and causative agent of zoonotic fasciolosis, impacts on food security with global economic losses of over $3.2 BN per annum through deterioration of animal health, productivity losses, and livestock death and is also re-emerging as a foodborne human disease. Cathepsin proteases present a major vaccine and diagnostic target of the F. hepatica excretory/secretory (ES) proteome, but utilization in diagnostics of the highly antigenic zymogen stage of these proteins is surprisingly yet to be fully exploited. Following an immuno-proteomic investigation of recombinant and native procathepsins ((r)FhpCL1), including mass spectrometric analyses (DOI: 10.6019/PXD030293), and using counterpart polyclonal antibodies to a recombinant mutant procathepsin L (anti-rFhΔpCL1), we have confirmed recombinant and native cathepsin L zymogens contain conserved, highly antigenic epitopes that are conformationally dependent. Furthermore, using diagnostic platforms, including pilot serum and fecal antigen capture enzyme-linked immunosorbent assay (ELISA) tests, the diagnostic capacities of cathepsin L zymogens were assessed and validated, offering promising efficacy as markers of infection and for monitoring treatment efficacy.


Subject(s)
Fasciola hepatica , Fascioliasis , Animals , Cathepsin L/genetics , Cathepsin L/metabolism , Enzyme Precursors , Enzyme-Linked Immunosorbent Assay/methods , Epitopes , Fasciola hepatica/chemistry , Fasciola hepatica/genetics , Fascioliasis/diagnosis , Humans
8.
Mol Omics ; 18(1): 45-56, 2022 01 17.
Article in English | MEDLINE | ID: mdl-34781332

ABSTRACT

Fasciola gigantica is one of the aetiological trematodes associated with fascioliasis, which heavily impacts food-production systems and human and animal welfare on a global scale. In the absence of a vaccine, fascioliasis control and treatment is restricted to pasture management, such as clean grazing, and a limited array of chemotherapies, to which signs of resistance are beginning to appear. Research into novel control strategies is therefore urgently required and the advent of 'omics technologies presents considerable opportunity for novel drug and vaccine target discovery. Here, interrogation of the first available F. gigantica newly excysted juvenile (NEJ) transcriptome revealed several protein families of current interest to parasitic flatworm vaccine research, including orthologues of mammalian complement regulator CD59 of the Ly6 family. Ly6 proteins have previously been identified on the tegument of Schistosoma mansoni and induced protective immunity in vaccination trials. Incorporating the recently available F. gigantica genome, the current work revealed 20 novel Ly6 family members in F. gigantica and, in parallel, significantly extended the F. hepatica complement from 3 to 18 members. Phylogenetic analysis revealed several distinct clades within the family, some of which are unique to Fasciola spp. trematodes. Analysis of available proteomic databases also revealed three of the newly discovered FhLy6s were present in extracellular vesicles, which have previously been prioritised in studying the host-parasite interface. The presentation of this new transcriptomic resource, in addition to the Ly6 family proteins here identified, represents a wealth of opportunity for future vaccine research.


Subject(s)
Fasciola hepatica , Fasciola , Animals , Fasciola/genetics , Fasciola hepatica/genetics , Mammals/genetics , Phylogeny , Proteomics , Transcriptome
9.
Science ; 374(6565): eabh2858, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34648330

ABSTRACT

In the brain's gray matter, astrocytes regulate synapse properties, but their role is unclear for the white matter, where myelinated axons rapidly transmit information between gray matter areas. We found that in rodents, neuronal activity raised the intracellular calcium concentration ([Ca2+]i) in astrocyte processes located near action potential­generating sites in the axon initial segment (AIS) and nodes of Ranvier of myelinated axons. This released adenosine triphosphate, which was converted extracellularly to adenosine and thus, through A2a receptors, activated HCN2-containing cation channels that regulate two aspects of myelinated axon function: excitability of the AIS and speed of action potential propagation. Variations in astrocyte-derived adenosine level between wake and sleep states or during energy deprivation could thus control white matter information flow and neural circuit function.


Subject(s)
Adenosine Triphosphate/metabolism , Astrocytes/physiology , Axons/physiology , Calcium/physiology , Cortical Excitability , Neural Conduction , Action Potentials , Animals , Mice , Mice, Transgenic , Patch-Clamp Techniques , Rats, Sprague-Dawley
10.
Pathogens ; 10(7)2021 Jul 20.
Article in English | MEDLINE | ID: mdl-34358062

ABSTRACT

Anoplocephala perfoliata is a neglected gastro-intestinal tapeworm, commonly infecting horses worldwide. Molecular investigation of A. perfoliata is hampered by a lack of tools to better understand the host-parasite interface. This interface is likely influenced by parasite derived immune modulators released in the secretome as free proteins or components of extracellular vesicles (EVs). Therefore, adult RNA was sequenced and de novo assembled to generate the first A. perfoliata transcriptome. In addition, excretory secretory products (ESP) from adult A. perfoliata were collected and EVs isolated using size exclusion chromatography, prior to proteomic analysis of the EVs, the EV surface and EV depleted ESP. Transcriptome analysis revealed 454 sequences homologous to known helminth immune modulators including two novel Sigma class GSTs, five α-HSP90s, and three α-enolases with isoforms of all three observed within the proteomic analysis of the secretome. Furthermore, secretome proteomics identified common helminth proteins across each sample with known EV markers, such as annexins and tetraspanins, observed in EV fractions. Importantly, 49 of the 454 putative immune modulators were identified across the secretome proteomics contained within and on the surface of EVs in addition to those identified in free ESP. This work provides the molecular tools for A. perfoliata to reveal key players in the host-parasite interaction within the horse host.

11.
Elife ; 102021 07 09.
Article in English | MEDLINE | ID: mdl-34240706

ABSTRACT

Voltage-gated sodium channels cluster in macromolecular complexes at nodes of Ranvier to promote rapid nerve impulse conduction in vertebrate nerves. Node assembly in peripheral nerves is thought to be initiated at heminodes at the extremities of myelinating Schwann cells, and fusion of heminodes results in the establishment of nodes. Here we show that assembly of 'early clusters' of nodal proteins in the murine axonal membrane precedes heminode formation. The neurofascin (Nfasc) proteins are essential for node assembly, and the formation of early clusters also requires neuronal Nfasc. Early clusters are mobile and their proteins are dynamically recruited by lateral diffusion. They can undergo fusion not only with each other but also with heminodes, thus contributing to the development of nodes in peripheral axons. The formation of early clusters constitutes the earliest stage in peripheral node assembly and expands the repertoire of strategies that have evolved to establish these essential structures.


Subject(s)
Interneurons/metabolism , Nodal Protein/metabolism , Animals , Axons/metabolism , Cell Adhesion Molecules/metabolism , Female , Ganglia, Spinal , Male , Mice , Mice, Inbred C57BL , Nerve Growth Factors/metabolism , Neural Conduction , Peripheral Nervous System , Schwann Cells/metabolism , Voltage-Gated Sodium Channels/metabolism
12.
Parasitology ; 148(12): 1490-1496, 2021 10.
Article in English | MEDLINE | ID: mdl-34193321

ABSTRACT

Environmental DNA (eDNA) surveying has potential to become a powerful tool for sustainable parasite control. As trematode parasites require an intermediate snail host that is often aquatic or amphibious to fulfil their lifecycle, water-based eDNA analyses can be used to screen habitats for the presence of snail hosts and identify trematode infection risk areas. The aim of this study was to identify climatic and environmental factors associated with the detection of Galba truncatula eDNA. Fourteen potential G. truncatula habitats on two farms were surveyed over a 9-month period, with eDNA detected using a filter capture, extraction and PCR protocol with data analysed using a generalized estimation equation. The probability of detecting G. truncatula eDNA increased in habitats where snails were visually detected, as temperature increased, and as water pH decreased (P < 0.05). Rainfall was positively associated with eDNA detection in watercourse habitats on farm A, but negatively associated with eDNA detection in watercourse habitats on farm B (P < 0.001), which may be explained by differences in watercourse gradient. This study is the first to identify factors associated with trematode intermediate snail host eDNA detection. These factors should be considered in standardized protocols to evaluate the results of future eDNA surveys.


Subject(s)
DNA, Environmental , Trematoda , Trematode Infections , Animals , Ecosystem , Trematoda/genetics , Water
13.
Dev Cell ; 56(9): 1346-1358.e6, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33945785

ABSTRACT

Myelination is essential for central nervous system (CNS) formation, health, and function. Emerging evidence of oligodendrocyte heterogeneity in health and disease and divergent CNS gene expression profiles between mice and humans supports the development of experimentally tractable human myelination systems. Here, we developed human iPSC-derived myelinating organoids ("myelinoids") and quantitative tools to study myelination from oligodendrogenesis through to compact myelin formation and myelinated axon organization. Using patient-derived cells, we modeled a monogenetic disease of myelinated axons (Nfasc155 deficiency), recapitulating impaired paranodal axo-glial junction formation. We also validated the use of myelinoids for pharmacological assessment of myelination-both at the level of individual oligodendrocytes and globally across whole myelinoids-and demonstrated reduced myelination in response to suppressed synaptic vesicle release. Our study provides a platform to investigate human myelin development, disease, and adaptive myelination.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Myelin Sheath/physiology , Organoids/physiology , Axons/metabolism , Axons/ultrastructure , Humans , Myelin Sheath/ultrastructure , Nerve Growth Factors/deficiency , Nerve Growth Factors/metabolism , Organoids/ultrastructure , Tetanus Toxin/pharmacology , Time Factors
14.
Vet Parasitol ; 294: 109435, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33946031

ABSTRACT

Fascioliasis causes significant economic losses and is a constant challenge to livestock farmers globally. Fluke faecal egg counts (flukeFECs) are a simple, non-invasive method used to detect the presence of patent liver fluke infection. Many flukeFEC techniques exist but they vary in complexity, precision and accuracy. The objective of this study was to evaluate the egg recovery capabilities of two simple flukeFEC methods at different egg concentrations in two ruminant species, using artificially spiked faecal samples. We added Fasciola hepatica eggs to sheep and cattle faeces at 2, 5 10 and 20 epg and utilised the Flukefinder® (FF) and a simple sedimentation method (referred to as the Becker method) to investigate the effects of methods, species and egg density on egg recovery. We calculated the proportion of fluke eggs recovered using each technique, and determined the lowest reliable egg detection threshold of each flukeFEC method. The performance of the flukeFEC methods were also compared using faecal samples collected from naturally infected animals. The egg-spiking study revealed that both FF and the Becker sedimentation method are significantly more likely to recover eggs from cattle faeces than sheep (P < 0.001). Overall, FF recovered more eggs than the Becker method (P < 0.001), and importantly has a reliable low egg detection threshold of 5 epg in sheep and cattle. The kappa coefficient indicated a substantial agreement between FF and the Becker method in naturally infected faecal samples collected from cattle (0.62, P < 0.05) and a moderate agreement in sheep (0.41, P < 0.05). This study demonstrated that FF has a low egg detection threshold and therefore has promising potential for the future of on-farm liver fluke diagnostics.


Subject(s)
Cattle Diseases/diagnosis , Fasciola hepatica/isolation & purification , Fascioliasis/veterinary , Parasite Egg Count/veterinary , Sheep Diseases/diagnosis , Animals , Cattle , Cattle Diseases/parasitology , Fascioliasis/diagnosis , Fascioliasis/parasitology , Feces/parasitology , Female , Parasite Egg Count/methods , Sheep , Sheep Diseases/parasitology
15.
Front Cell Infect Microbiol ; 11: 661830, 2021.
Article in English | MEDLINE | ID: mdl-33959516

ABSTRACT

Parasite derived extracellular vesicles (EVs) have been proposed to play key roles in the establishment and maintenance of infection. Calicophoron daubneyi is a newly emerging parasite of livestock with many aspects of its underpinning biology yet to be resolved. This research is the first in-depth investigation of EVs released by adult C. daubneyi. EVs were successfully isolated using both differential centrifugation and size exclusion chromatography (SEC), and morphologically characterized though transmission electron microscopy (TEM). EV protein components were characterized using a GeLC approach allowing the elucidation of comprehensive proteomic profiles for both their soluble protein cargo and surface membrane bound proteins yielding a total of 378 soluble proteins identified. Notably, EVs contained Sigma-class GST and cathepsin L and B proteases, which have previously been described in immune modulation and successful establishment of parasitic flatworm infections. SEC purified C. daubneyi EVs were observed to modulate rumen bacterial populations by likely increasing microbial species diversity via antimicrobial activity. This data indicates EVs released from adult C. daubneyi have a role in establishment within the rumen through the regulation of microbial populations offering new routes to control rumen fluke infection and to develop molecular strategies to improve rumen efficiency.


Subject(s)
Cattle Diseases , Extracellular Vesicles , Trematoda , Animals , Cattle , Proteomics , Rumen
16.
Vet Parasitol Reg Stud Reports ; 24: 100562, 2021 04.
Article in English | MEDLINE | ID: mdl-34024378

ABSTRACT

Gastrointestinal nematodes (GIN) negatively impact productivity and welfare in sheep globally and are estimated to cost the European sheep industry €157-477 million annually. GIN are mainly controlled by anthelmintic treatment, however, as anthelmintic resistance becomes prominent, the routine treatment of ewes against GIN has been questioned. A questionnaire survey of 383 sheep farmers in Great Britain was conducted to identify strategies currently used to control GIN infections in ewes. Ordinal and binary regression analysis were used to identify factors associated with use of practices known to influence anthelmintic resistance development, including number and timing of ewe GIN anthelmintic treatment, targeted selective treatment (TST) of ewes, drench and move of ewes and long-acting moxidectin treatment of periparturient ewes. Participating farmers treated their ewes against GIN 1.68 times per year on average, with 42.3% and 32.1% of participating farmers worming their ewes once or twice a year on average, respectively. 17.2% of participating farmers wormed their ewes more than twice a year, and 8.4% never worm their ewes. Participating farmers who devised GIN control strategies based on SCOPS guidelines treated their ewes significantly less per year (P < 0.001), whilst those determining treatment timing based on ewe DAG scores or the time of year treated their ewes significantly more frequently (P < 0.001). Farmers who devised GIN control strategies in conjunction with their vet had greater odds of using TST (P < 0.001), as well as farmers who determined flock treatment timing based on ewe condition (P = 0.027). The use of narrow spectrum flukicides was significantly associated with reduced number of annual ewe GIN anthelmintic treatments (P < 0.001), TST of ewes against GIN (P < 0.001) and the avoidance of moving ewes to clean pastures following GIN treatment (P < 0.001). The presence of sheep scab on a farm or in the area was significantly associated with increased annual GIN treatments for ewes (P = 0.002), not using TST strategies to control GIN in ewes (P < 0.001) and moving ewes to clean pasture after anthelmintic treatment, whilst using macrocyclic lactones treatments to prevent sheep scab was significantly associated with the treatment of periparturient ewes with long-acting moxidectin (P = 0.001). This research suggests that by encouraging the application of evidence based targeted or targeted selective treatment strategies, further interaction between farmers and veterinarians/SCOPS guidance, and the uptake of best practices for controlling liver fluke and sheep scab on farms, sustainable GIN control strategies can become the common practice in ewes.


Subject(s)
Anthelmintics , Nematoda , Nematode Infections , Sheep Diseases , Animals , Anthelmintics/therapeutic use , Farms , Female , Nematode Infections/drug therapy , Nematode Infections/prevention & control , Nematode Infections/veterinary , Sheep , Sheep Diseases/drug therapy , Sheep Diseases/prevention & control
17.
J Cell Biol ; 220(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33538762

ABSTRACT

Neuronal remodeling and myelination are two fundamental processes during neurodevelopment. How they influence each other remains largely unknown, even though their coordinated execution is critical for circuit function and often disrupted in neuropsychiatric disorders. It is unclear whether myelination stabilizes axon branches during remodeling or whether ongoing remodeling delays myelination. By modulating synaptic transmission, cytoskeletal dynamics, and axonal transport in mouse motor axons, we show that local axon remodeling delays myelination onset and node formation. Conversely, glial differentiation does not determine the outcome of axon remodeling. Delayed myelination is not due to a limited supply of structural components of the axon-glial unit but rather is triggered by increased transport of signaling factors that initiate myelination, such as neuregulin. Further, transport of promyelinating signals is regulated via local cytoskeletal maturation related to activity-dependent competition. Our study reveals an axon branch-specific fine-tuning mechanism that locally coordinates axon remodeling and myelination.


Subject(s)
Axons , Motor Neurons/metabolism , Myelin Sheath/metabolism , Animals , Mice , Mice, Transgenic , Synaptic Transmission
18.
Parasitol Res ; 120(3): 979-991, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33501588

ABSTRACT

Fasciola hepatica (liver fluke), a significant threat to food security, causes global economic loss for the livestock industry and is re-emerging as a foodborne disease of humans. In the absence of vaccines, treatment control is by anthelmintics; with only triclabendazole (TCBZ) currently effective against all stages of F. hepatica in livestock and humans. There is widespread resistance to TCBZ and its detoxification by flukes might contribute to the mechanism. However, there is limited phase I capacity in adult parasitic helminths with the phase II detoxification system dominated by the soluble glutathione transferase (GST) superfamily. Previous proteomic studies have demonstrated that the levels of Mu class GST from pooled F. hepatica parasites respond under TCBZ-sulphoxide (TCBZ-SO) challenge during in vitro culture ex-host. We have extended this finding by exploiting a sub-proteomic lead strategy to measure the change in the total soluble GST profile (GST-ome) of individual TCBZ-susceptible F. hepatica on TCBZ-SO-exposure in vitro culture. TCBZ-SO exposure demonstrated differential abundance of FhGST-Mu29 and FhGST-Mu26 following affinity purification using both GSH and S-hexyl GSH affinity. Furthermore, a low or weak affinity matrix interacting Mu class GST (FhGST-Mu5) has been identified and recombinantly expressed and represents a new low-affinity Mu class GST. Low-affinity GST isoforms within the GST-ome was not restricted to FhGST-Mu5 with a second likely low-affinity sigma class GST (FhGST-S2) uncovered. This study represents the most complete Fasciola GST-ome generated to date and has supported the potential of subproteomic analyses on individual adult flukes.


Subject(s)
Anthelmintics/pharmacology , Fasciola hepatica/drug effects , Glutathione Transferase/metabolism , Helminth Proteins/metabolism , Sulfoxides/pharmacology , Triclabendazole/pharmacology , Animals , Drug Resistance/drug effects , Fasciola hepatica/classification , Fasciola hepatica/metabolism , Isoenzymes/metabolism , Proteomics
19.
Parasit Vectors ; 13(1): 496, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32998778

ABSTRACT

BACKGROUND: Fascioliasis caused by the trematodes Fasciola hepatica and F. gigantica, is a global neglected zoonotic disease estimated to cost the livestock industry over €2.5 billion annually. Farm management measures and sustainable use of anthelmintics can, in principle, effectively control trematode infection in livestock and reduce the rate of developing anthelmintic resistance. Previously, we designed an environmental DNA (eDNA) assay to identify a common trematode intermediate host, the freshwater snail Galba truncatula, in water sources to measure specific trematode infection risk areas on pasture-land. To improve this procedure, we now report a loop-mediated isothermal amplification (LAMP) assay to identify G. truncatula eDNA. METHODS: A LAMP assay was designed and optimised (e.g. temperature, time duration and primer concentration) to identify G. truncatula DNA. The ability of the LAMP assay to target G. truncatula DNA was identified, and LAMP assay limit of detection was investigated in comparison to conventional PCR. In the field, 48 water samples were collected from stream, ditch and water pool habitats in four locations at two Aberystwyth University farms over a seven week period to investigate the applicability of the LAMP assay for use on eDNA samples, in comparison to conventional PCR. RESULTS: The LAMP assay delivered detectable results in 30 min at 63 °C. The assay discriminated between G. truncatula DNA and non-target DNA, presenting a level of DNA detection comparable to conventional PCR. No significant difference was found between the ability of the LAMP and PCR assay to identify G. truncatula eDNA in water samples. Kappa coefficient analysis revealed a moderate level of agreement between LAMP and PCR assays. CONCLUSIONS: This study demonstrated that the LAMP assay can detect G. truncatula eDNA in a simple and rapid manner. The LAMP assay may become a valuable tool to determine optimum pasture management for trematode parasite control.


Subject(s)
DNA, Environmental/genetics , Fascioliasis/veterinary , Fresh Water/parasitology , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Snails/genetics , Animals , Ecosystem , Fasciola hepatica/genetics , Fasciola hepatica/physiology , Fascioliasis/parasitology , Fascioliasis/prevention & control , Fascioliasis/transmission , Livestock/parasitology , Snails/parasitology
20.
Elife ; 92020 09 09.
Article in English | MEDLINE | ID: mdl-32903174

ABSTRACT

Ion channel complexes promote action potential initiation at the mammalian axon initial segment (AIS), and modulation of AIS size by recruitment or loss of proteins can influence neuron excitability. Although endocytosis contributes to AIS turnover, how membrane proteins traffic to this proximal axonal domain is incompletely understood. Neurofascin186 (Nfasc186) has an essential role in stabilising the AIS complex to the proximal axon, and the AIS channel protein Kv7.3 regulates neuron excitability. Therefore, we have studied how these proteins reach the AIS. Vesicles transport Nfasc186 to the soma and axon terminal where they fuse with the neuronal plasma membrane. Nfasc186 is highly mobile after insertion in the axonal membrane and diffuses bidirectionally until immobilised at the AIS through its interaction with AnkyrinG. Kv7.3 is similarly recruited to the AIS. This study reveals how key proteins are delivered to the AIS and thereby how they may contribute to its functional plasticity.


Subject(s)
Axon Initial Segment/metabolism , Cell Adhesion Molecules/metabolism , Cell Membrane/metabolism , KCNQ3 Potassium Channel/metabolism , Nerve Growth Factors/metabolism , Animals , Axons/metabolism , Cells, Cultured , Cerebellum/cytology , Cerebellum/metabolism , Female , Humans , Male , Mice , Mice, Transgenic , Neurons/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...